Multi-State Based Facial Feature Tracking and Detection

نویسندگان

  • Ying-li Tian
  • Takeo Kanade
  • Jeffrey F. Cohn
  • Yingli Tian
چکیده

Accurately and robustly tracking facial features must cope with the large variation in appearance across subjects and the combination of rigid and non-rigid motion. We present a work toward a robust system to detect and track facial features including both permanent (e.g. mouth, eye, and brow) and transient (e.g. furrows and wrinkles) facial features in a nearly frontal image sequence. Multi-state facial component models are proposed for tracking and modeling different facial features. Based on these multi-state models, and without any artificial enhancement, we detect and track the facial features, including mouth, eyes, brows, cheeks, and their related wrinkles and facial furrows by combining color, shape, edge and motion information. Given the initial location of the facial features in the first frame, the facial features can be detected or tracked in remainder images automatically. Our system is tested on 500 image sequences from the Pittsburgh-Carnegie Mellon University (Pitt-CMU) Facial Expression Action Unit (AU) Coded Database, which includes image sequences from children and adults of European, African, and Asian ancestry. Accurate tracking results are obtained in 98% of image sequences.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Analysis and Synthesis of Facial Expressions by Feature-Points Tracking and Deformable Model

Face expression recognition is useful for designing new interactive devices offering the possibility of new ways for human to interact with computer systems. In this paper we develop a facial expressions analysis and synthesis system. The analysis part of the system is based on the facial features extracted from facial feature points (FFP) in frontal image sequences. Selected facial feature poi...

متن کامل

Robust facial feature tracking under varying face pose and facial expression

This paper presents a hierarchical multi-state pose-dependent approach for facial feature detection and tracking under varying facial expression and face pose. For effective and efficient representation of feature points, a hybrid representation that integrates Gabor wavelets and gray-level profiles is proposed. To model the spatial relations among feature points, a hierarchical statistical fac...

متن کامل

Feature-based Malicious URL and Attack Type Detection Using Multi-class Classification

Nowadays, malicious URLs are the common threat to the businesses, social networks, net-banking etc. Existing approaches have focused on binary detection i.e. either the URL is malicious or benign. Very few literature is found which focused on the detection of malicious URLs and their attack types. Hence, it becomes necessary to know the attack type and adopt an effective countermeasure. This pa...

متن کامل

Facial Feature Tracking for Emotional Dynamic Analysis

This article presents a feature-based framework to automatically track 18 facial landmarks for emotion recognition and emotional dynamic analysis. With a new way of using multi-kernel learning, we combine two methods: the first matches facial feature points between consecutive images and the second uses an offline learning of the facial landmark appearance. Matching points results in a jitter-f...

متن کامل

Facial Expression Recognition Based on Structural Changes in Facial Skin

Facial expressions are the most powerful and direct means of presenting human emotions and feelings and offer a window into a persons’ state of mind. In recent years, the study of facial expression and recognition has gained prominence; as industry and services are keen on expanding on the potential advantages of facial recognition technology. As machine vision and artificial intelligence advan...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999